Liquefied Natural Gas (LNG) Yard Hostler Demonstration and Commercialization Project
• Port of Long Beach
• Sound Energy Solutions
• WestStart-CALSTART
• Long Beach Container Terminal, Inc.
• United States Environmental Protection Agency
 – Awarded $75,000 to project
• Total project cost: approximately $1 million
Project Goals

• Assess performance and emissions of LNG yard hostlers
 – Fuel Economy
 – Operator Acceptance
 – Service and Maintenance
 – Compare relative emissions to diesel yard hostlers
 – Business Case
Test Program Overview

- Performance and emissions testing on 3 LNG yard hostlers
- Baseline comparison group: Eight diesel yard hostlers
- In-use testing conducted over 8 months (June 2006 – January 2007)
- Training provided to LBCT staff
- Temporary LNG refueling infrastructure
 - 3,450 gallon ORCA™ parked in “fixed” location
- Fuel economy data collected daily
- Drivers and mechanics surveyed
- Emissions testing and analysis performed by UCR CE-CERT
Fuel Economy

• Energy content of LNG < diesel, for direct comparison LNG gallons converted to diesel gallon equivalents (DGE)

• Average Fuel Economy
 - 8 diesel yard hostlers: 1.7 diesel gal/hr
 - 3 LNG yard hostlers: 3.8 LNG gal/hr
 = 2.2 DGE/hr

• Conclusions
 - LNG yard hostlers use about 30% more DGE than diesel yard hostlers
 - Expected with heavy-duty spark-ignited engine vs. compression-ignited diesel engine
Operator Acceptance

- 97% felt LNG yard hostlers performed same or better than traditional diesel yard tractors
- 67% of drivers rated LNG yard hostlers superior in general
- Only Cab entry and exit frequently rated “worse” than diesel yard hostlers
- Some cited slow acceleration, vehicle “hesitation” and problems with shifting
Maintainability and Serviceability

- 100% of mechanics rated LNG yard hostlers “acceptable”
- Routine maintenance performed several times during performance testing period
- Noted LNG pressure regulation and leaking problems during early phase of demonstration
 - Westport Innovations upgraded on-vehicle LNG fueling system to address problems
Emissions Testing

- Compared emissions between LNG and diesel yard hostlers
 - 2005 LNG on-road engine
 - Tier 1 diesel off-road engine (2)
 - Tier 2 diesel off-road engine
 - 2005 diesel on-road engine

- Steady-state emissions testing on heavy-duty chasis-dynamometer

- Followed CARB’s yard hostlers emissions testing protocol

- Emissions Testing performed by UCR CE-CERT
Emissions Testing Results

- By agreement, PM emissions were not tested
- Lowest NOx emissions produced by 2005 on-road diesel yard hostler
- NOx emissions from LNG yard hostler approximately 21% higher than 2005 on-road diesel yard hostler
 - Possible explanation: LNG engine running “lean” at higher loads - higher engine temperature and higher NOx emissions

<table>
<thead>
<tr>
<th>Engine Year/Model</th>
<th>Fuel Type</th>
<th>NOx (g/whp-hr)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005 ISB 5.9L</td>
<td>Diesel</td>
<td>2.94</td>
</tr>
<tr>
<td>2005 C-Gas 8.3L</td>
<td>LNG</td>
<td>3.57</td>
</tr>
</tbody>
</table>

*Values shown in units of grams per wheel-horsepower-hour
• CARB, POLA, and PMSA conducted study of yard hostlers in 2006
• Diesel, liquefied petroleum gas (LPG or propane), and LNG-fueled yard hostlers
• NOx emissions from LNG yard hostler higher compared to diesel yard hostler in POLA study
• NOx emissions slightly lower (approximately 18%) in this study compared to POLA study

<table>
<thead>
<tr>
<th>Engine Year/Model</th>
<th>Fuel Type</th>
<th>POLB Study</th>
<th>POLA Study</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NOx</td>
<td>PM</td>
<td>NOx</td>
</tr>
<tr>
<td>2004 ISB 5.9L</td>
<td>Diesel</td>
<td>---</td>
<td>2.47</td>
</tr>
<tr>
<td>2005 ISB 5.9L</td>
<td>Diesel</td>
<td>2.94</td>
<td>0.10</td>
</tr>
<tr>
<td>2005 C-Gas 8.3L</td>
<td>LNG</td>
<td>3.57</td>
<td>4.36</td>
</tr>
</tbody>
</table>

*Values shown in units of grams per wheel-horsepower-hour (g/whp-hr)
Business Case Assessment

• LNG yard hostlers not currently offered as standard commercial product
• New diesel yard hostler typically $65K-$80K
• Assuming avg. base cost of $80K, incremental cost for LNG yard hostler approximately $40K (50% of base cost) = $120K
• Life cycle cost analysis: diesel and LNG yard hostler approximately equal over 10-year life
• LNG fueling infrastructure costs (est. $700k per station) and 2010 emissions regulation compliance not considered
• Permitting process for LNG fueling infrastructure can vary
• Demand unlikely without financial or regulatory incentives
Recommendations

- Measure LNG vs. diesel yard hostler emissions using yard hostlers with current engines that meet (or exceed) heavy-duty emissions standards
- Evaluate in-use performance of new LNG yard hostlers
- Update business case analysis with actual costs for new LNG yard hostlers
- Optimize refueling procedures for LNG yard hostler fleets
- Consider port-based incentives to address incremental costs of LNG yard hostlers and capital costs of LNG refueling infrastructure
Next Steps

• Emissions testing on:
 – 2007 on-road diesel engine yard hostler
 – diesel engine yard hostlers converted to operate on LNG fuel

• Develop standard yard hostler duty cycle, available late summer
Thank you!